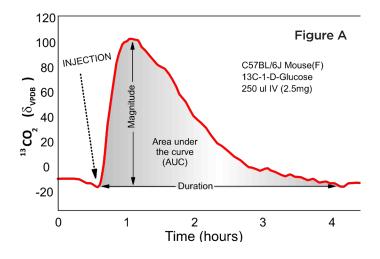
# SABLE ENABLES


# Stable Isotope Gas Analyzer

Continuous measurement of <sup>13</sup>C and <sup>18</sup>O isotopes in exhaled breath

The new Stable Isotope Gas Analyzer is a cuttingedge upgrade to our standard Promethion™ systems, allowing simultaneous measurement of stable isotope tracers synchronously with the Promethion data stream.

#### Measure the oxidation of exogenous nutrients

Figure A shows the oxidative disposal of a 2.5 mg bolus of <sup>13</sup>C-glucose in a control mouse. Possible experimental manipulations include: age, diet, hormonal treatment, experimental drugs, microbiome manipulations, exercise, thermal exposure, surgical procedures, illness/injury, etc. Critical metrics include magnitude and duration of response and AUC for calculating % dose recovery.





## FEATURES

Simultaneous measurement of  ${}^{13}CO_2$ ,  $C{}^{18}O_2$ ,  $CO_2$ , and  $H_2O$ 

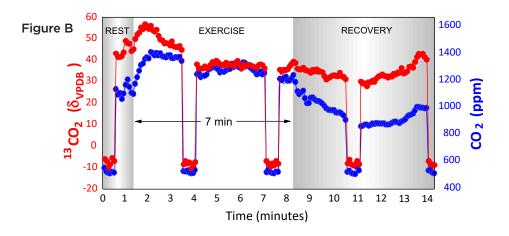
One analyzer can be multiplexed with up to 8 cages

Fast response time and low power requirement

Wide measurement ranges for  $\delta^{13}$ C (-100‰ to 4000‰) and CO<sub>2</sub> (300 ppm to 25,000 ppm)

High precision for both  $\delta^{13}C$  (0.15‰) and  $\delta^{18}O$  (1.0‰) as well as CO\_2 (0.05 ppm) and H\_2O (50 ppm)

Over 10,000 different isotopically-labeled tracers commercially available


No consumables or external calibration required





#### Measure the oxidation of endogenous nutrients

Figure B shows the oxidation of a fatty acid tracer ( $^{13}$ C-Palmitic acid) infused into rodent diet for 10 days, selectively enriching the body lipids with  $^{13}$ C. The CO<sub>2</sub> and  $\delta^{13}$ C measured during rest, treadmill exercise (15 m/min) and recovery show that total lipid oxidation of a mouse increases during the first minute of exercise, but decreases to resting levels during steady-state exercise. Researchers could also selectively enrich the proteins in the body by feeding rodent diet infused with  $^{13}$ C-1-L-Leucine, thereby allowing quantitative assessment of endogenous protein oxidation in real-time.



### SPECIFICATIONS

| PRECISION<br>(1 SEC/10 SEC/100 SEC)    | δ <sup>13</sup> C: 3.0‰ / 1.0‰ / 0.30‰                        |
|----------------------------------------|---------------------------------------------------------------|
|                                        | δ¹80: 16‰ / 5‰ / 2‰                                           |
|                                        | <sup>12</sup> CO <sub>2</sub> : 0.8 ppm / 0.30 ppm / 0.10 ppm |
|                                        | H <sub>2</sub> O: 200 ppm (60 sec) / 100 ppm (300 sec)        |
| TOTAL UNCERTAINTY                      | <1%                                                           |
| MEASUREMENT RANGE<br>(MEETS ALL SPECS) | CO <sub>2</sub> : 380 – 25000 ppm                             |
|                                        | H <sub>2</sub> 0: 4000 – 60000 ppm                            |
| OPERATIONAL RANGE                      | $H_20: 0-70000$ ppm (non-condensing)                          |
|                                        | CO <sub>2</sub> : 0 – 50000 ppm                               |
| MEASUREMENT RATES                      | User-selectable rates up to 1 Hz                              |
| SAMPLING CONDITIONS                    | Ambient Humidity: non-condensing (0 $-$ 100% RH)              |
|                                        | Sample Temperature: -20 $-$ 50 °C                             |
|                                        | Operating Temperature: $0-45~^\circ\mathrm{C}$                |
| FITTINGS                               | Outlet (internal pump): 1/4 in.                               |
|                                        | Inlet: 3/8 in.                                                |
| OUTPUTS                                | Digital (RS-232), Ethernet, USB                               |
| POWER REQUIREMENTS                     | 115/230 VAC, 50/60 Hz 66 W                                    |
| DIMENSIONS (H x W x D)                 | 18cm (7") x 47 cm (18.5") x 36 cm (14")                       |
| WEIGHT                                 | 17 kg (37.5 lbs)                                              |

#### For more information on stable isotope labeling utilization, see:

McCue, M. D. (2011). "Tracking the oxidative and non-oxidative fates of isotopically labeled nutrients in animals." BioScience 61(3): 217-230.

Welch Jr, K. C., et al. (2016). "Combining respirometry with stable isotopes to investigate fuel use in animals." Annals of the New York Academy of Sciences 1365(1): 15-32.

McCue, M. D. and K. C. Welch Jr (2016). "<sup>13</sup>C-Breath testing in animals: Theory, applications, and future directions." J Comp Physiol 186B(3): 265-285.

#### **ABOUT US**

Sable Systems International designs and manufactures leading-edge gas, metabolic and behavioral measurement systems for calorimetry, respirometry, metabolic/behavioral phenotyping, and gas analysis. Our products enable the highest precision and resolution, optimum workflow and reliable performance – giving you utmost confidence in your results. By scientists, for scientists, Sable enables results that impact research and industry breakthroughs.



Sable Systems International 3840 N. Commerce Street North Las Vegas, NV 89032, USA TELEPHONE: US: +1 800 330 0465 / + 1 702 269 4445 EMAIL: sales@sablesys.com



Sable Systems Europe GmbH Ostendstr. 25 D-12459 Berlin, Germany TELEPHONE: +49 30 5304 1002 MOBILE: +49 176 2078 7008 FAX: +49 30 5304 1003

www.sablesys.com